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Some Inves t iga t ions  Relat ing t o  

t he  E l a s t o s t a t i c s  of a Tapered Tube 

by 

Barry Bernstein 

1. Introduction 
I 

The problem of e l a s t o s t a t i c s  of a tapered tube i s  one f o r  

which one searches t h e  l i t e r a t u r e  i n  vain. The problem seems 

t o  be c lose  t o  t h a t  of a cy l ind r i ca l  tube,  bu t  this appearance 

i s  q u i t e  deceptive. Several s i n g u l a r i t i e s  appear i n  t h e  

tapered tube which do no t  i n  t he  cy l ind r i ca l  tube. Furthermore, 

i n  a coordinate system appropr ia te  t o  t h e  cy l ind r i ca l  tube,  

separat ion of var iab les  i s  possible.  Not so  w i t h  t he  tapered 

tube. I n  this r epo r t  we s h a l l  explore some approaches t o  t he  

problem. No approach t h a t  we s h a l l  present  has a t  t h i s  time 

shown i t s e l f  t o  be t h e  c l e a r  way t o  proceed. However, some 

of them may have some promise. 

After  an in t roduct ion t o  t h e  problem, we s h a l l  d iscuss  

some methods found i n  t h e  l i t e r a t u r e .  Then we s h a l l  present  

some new exploratory r e s u l t s .  Although we cannot be conclusive 

a t  this time, we hope t h a t  we have opened some p o s s i b i l i t i e s  

f o r  f u t u r e  development. 

References a r e  i n  t he  annotated bibliography, Section 8. 

Special  L i s t  of Symbols: 

Because we a r e  quoting from d i f f e r e n t  sources which 

use t he  same symbols i n  d i f f e r e n t  ways, and s ince  we wish, 

with only, perhaps, reasonable modification t h a t  t he  reader 

be ab l e  t o  recognize t h e  symbols i n  t he  quoted sources, we 



cannot be completely cons i s ten t  i n  using a  symbol i n  only one 

way i n  t h i s  report .  For this reason, we have compiled a l is t  

of symbols here with t h e  d i f f e r e n t  uses of t he  same symbol 

explained. Symbols a r e  l i s t e d  roughly i n  t h e  order  i n  which 

they appear i n  t he  t e x t ,  except t h a t  a l l  l i s t i n g s  of d i f f e r e n t  

uses  of t h e  same symbol appear together. If t h e  reader w i l l  

r e f e r  t o  this l i s t ,  confusion w i l l  be avoided. 

Svmbol . Uses - 
V p o t e n t i a l  f b c t i o n  ( sec t ion  2) 

V a  so lu t ion  of (28) with m = l  ( sec t ion  7)  

C0,C1,C2,C3 constants  ( sec t ion  2) 

vrn Fourier  component of p o t e n t i a l  ( sec t ion  2) 

R,@ ,Z cy l ind r i ca l  coordinates 

m an i n t e g e r  

d" reduced po ten t i a l  ( sec t ion  2) 

~2 def.ined by equation ( 4 )  

r={+iy coordinates f o r  t he  tapered tube ( sec t ion  2 )  
( e s s e n t i a l l y  and 7 of sec t ion  2  a r e  t he  
Niven coordinates and 0 of s ec t ion  5) P 

9 7  
c h a r a c t e r i s t i c  coordinates ( sec t ions  5 ,6)  

t h e  dis tance of t h e  i n t e r sec t ion  of t h e  
inner  and ou te r  surface  of t h e  tapered tube 
from the  a x i s  

separat ion funct ions  (equation 6 )  

some a r b i t r a r y  function ( sec t ion  6 )  

t he  dis tance from t h e  s ingu la r i t y  i n  Zakvs 
coordinate system (sec t ion  3)  except t h a t  
Zak takes  c  = 1, this i s  t h e  same a s  t h e  
Niven coordinate r of sec t ion  5  



a Niven coordinate (sections 5,6,7) in 
which p = dnr 

Zak's angular coordinate (section 3). The - 
same as the Niven coordinate 8 (sections 5,6,7 

Southwell potentials (section 3) 

gamma function (section 4) 

a curve (section 6) 

a separation function (section 3) 

a constant (section 3)  

the taper angle (see figure) 

a function (equation 7) 

Cartesian coordinates 

defined by equation (23) (section 6) 

same as vm, but in Hein1s notation 

self explanatory - (equation 9) 
Niven coordinates (section 5) 

n/2 - '8 
some special coordinates (equation 15 
and following equation) 

some constant coefficients (equation 17) 

defined by equation (18) 

,characteristic function (section 6) 

Niven coordinates of a given point (section 6) 

characteristic coordinates of a given point 
(section 6) 

hypergeometric function (section 6) 

points of intersection of characteristics 
with curve 

as defined in the equation following (25) 



a s  defined i n  equation (27) 

a s  i n  equation (28) - same a s  urn 
funct ions  t o  be determined (equation 29) 

an index ( sec t ion  7 )  

constants  t o  be determined ( sec t ion  7 )  

an in t ege r  (equation 34)  

t he  g r e a t e s t  i n t ege r  i n  n/2 ( sec t ion  7)  

coe f f i c i en t s  ' t o  be determined (equation 39) 

2. The Nature of t he  Problem 

That t h e  problem of e l a s t o s t a t i c s  hangs on t he  study of 

Laplace 's  equation i s  wel l  known. A review of so lu t ions  of 

such problems i n  terms of p o t e n t i a l  funct ions  is  given by 

Green aqd Zerna, sec t ion  ( 5 , 6 )  [13]. If one could handle 

Laplace 's  equation f o r  t he  tapered tube,  then e l a s t o s t a t i c  

problems would be acces s ib l e .  

The first e f f o r t , '  then, t h a t  seems reasonable i s  t o  see  

i f  separat ion of va r i ab l e s  is  possible.  We tu rn ,  then,  t o  t he  

work by Snow [I]. We consider here  chapter  I X ,  p. 228 of this 

work. 

In  cy l ind r i ca l  coordinates R,  Z ,  @ , we have f o r  Laplace 's  

equation f o r  a p o t e n t i a l  V 

From equation (I), we may immediately separa te  out  t h e  

angular  coordinate @ by wr i t i ng  V i n  a Four ier  s e r i e s  i n  @. 

Indeed, Snow wr i t e s  



where Co, C1, C2, C and 0, a r e  constants. The coe f f i c i en t  3 
P s a t i s f i e s  

O r ,  pu t t ing  
7 

i n  equation (2 )  one obta ins  an equation f o r  t he  reduced 

p o t e n t i a l  urn, namely 

where 

Now i f  one looks a t  t he  R-Z plane one sees  t h a t  t h e  t r a c e  

on this plane of a tapered region can be represented a s  a wedge, 

one s ide  of.which is  p a r a l l e l  t o  t he  Z-axis a t  some d is tance ,  

say, c ,  from the  a x i s ,  and crossing the  other  s ide  a t ,  say,  

t h e  Z-axis a t  an angle a ( s e e : f i g u r e ) ,  which we c a l l  t h e  , 
I 

t ape r  angle. A conformal mapping, then,' from the  Z + i R  plane 

i n t o  t he  plane of r = b + i q  given by 

r =  ~ o g ( ~  + R - iC) 

gi'ves f o r  ( 3 )  



Now equation (5) is an equation in 4 ,  T ,  which are 
natural coordinates for the tapered tube. Indeed, in this 

coordinate system, the surfaces of the tube become r = 0 and 

51 = a. One may say more: This is essentially the only ortho- 

gonal coordinite system in which the surfaces of the tube 

become coordinate surfaces for any value of a. 

We now ask the question whether or not one may find 

solutions of the form 

where T. is to be found. The answer is given by Snow (pp. 252- 

253). It appears that the answer is no, since 

a2 e 
3 t C 6e cosq(l+e cosv) 

a t  a? '(a + e' sin? l2 = C .  2 (a+e sin?) 
+ 0 

which, by application of Snow's result to our'equation implies 

that separation of variables, even to within a known factor T, 

is not possible for the coordinate system ( 4 ,  ?) .  
Techniques of separation,of variables, with all their 

ramifications, then fail. Other techniques must then be sought. 

And a look at some of these is then our task. 

3. The Work of Zak 

Here we shall discuss a technique used by Zak for solving 

a problem of a cylinder with stress singularities. The method 

happens to involve the Southwell potentials [14], but the 



essential feature of it is the method of obtaining a sequence 

of functions which approach a solution. 

Zak used a coordinate system which is essentially that 

developed in the previous section and, indeed, is equivalent 

to Nivents coordinates (section 5). If we replace 5 by the 

letter p and by the letter 8 ,  we shall have the coordinate 
system which he uses. In this section we shall adhere to Zakls 

notation. HoGever, the same letter p will be used differently 
elsewhere in this report, so caution on the part of the reader 

is urged. Please refer to the list of symbols. If referred 

to the tapered tube, Zak's coordinates are the Niven coordinates 

normalized so that c=l. 

The Southwell potentials as modified by Zak satisfy the 

equations 

in cylindrical coordinates. After expressing these equations 

in terms of his p and 8, Zak seeks a solution for, say, fL in 

the form 

and obtains a sequence of equations 



so  t h a t  each funct ion F depends on t h e  previous ones. A 
P 

s imi l a r  technique i s  appl ied t o  r. 
It is not  d i f f i c u l t  t o  see  t h a t  Zakls technique could 

r ead i ly  be appl ied t o  t he  tapered tube problem: The proper 

coordinate form and t h e  technique a r e  a l ready developed. 

A t  t h e  time of wr i t ing  of this repor t ,  we f e e l  t h a t  Zakls 

method may be the  most promisingwhere it can be applied. It 

appears t o  have two disadvantages. Zak expands a term a s  

which has a s  i ts  domain of convergence a region near  f = O .  

(This region was of i n t e r e s t  f o r  t h e  study of a s ingu la r i t y  

For t h e  tapered tube it may be of i n t e r e s t  i f  one l i m i t s  

oneself  t o  regions where I f  s inbl  < 1, but t h i s  means t h a t  
I 

t h e r a d i a l  length allowed i s  l imi ted  by the  angle of taper.  

For example, f o r  a t ape r  angle of Z O ,  t h e  expansion i s  

va l id  f o r  up t o  about 28 (dis tance from s i n g u l a r i t y  about P 
28 times the  quant i ty  C i n  Niven coordinates)  and convergence 

would probably be slow i f  were near  28. P 
Although we do n o t  see  how t o  do it a t  p resen t ,  it may 

be 'pos s ib l e  t o  apply Zakts technique t o  a f a r  away region. 



But the trouble at the moment is that as one goes toward 

larger P there are points closer and closer to the surface 
$=  0 at which (1 - f sin$)-' becomes infinite. 

The second disadvantage which may be minor is that one 

does not deal with a sequence of exact solutions. However, 

this would not necessarily impair its usefulness where con- 

vergence is rapid enough. Nevertheless, in the broad study of 

the question, .a search for exact solutions should be made. If 
-...-.l. -,.1..+<-..- --.. 1 2  I... - - - - - I . , -A  <-A- +L.- -,.-,..+<-.. -0 Q 
YUUl l  ~ U I U C L U I l O  C U U L U  "G ~ Y ~ C U V L C U  L l l C U  C11G Y U I U C L U I I  U I  C1 

problem, they might or might not provide a better method than 

that of Zak in some given situation. In sections 6 and 7 we 

report on a search for such solutions. 

4. Integral Equations 

The method of integral equations rests on the representa- 

tion of the solution of Laplace's equation as an integral. A 

review of such integral' representations is given by Temple [ 7 ] ,  

who contends that the culmination of this work is in Whittaker's 

result that potential functions which are replar near the 

Basically the method of integral equations consists of setting 

up equations for the unknown :function in an integral expression 

such as (7). !These equations are based on the boundary 

conditions. 



A review of the use of the method of integral equations 

is given by Heins [2], who makes use of the Poisson integral 

representation: For a function Sn(R,Z) satisfying 

which is the equation(*) satisfied by a Fourier component 

of an harmonic function S,  one obtains 

where 

Now the validity of the Poisson Integral Representation 

(10) hangs upon the regularity of the solution on the Z axis. 

Indeed the assumption of such'regularity is stated explicitly 

by Heins (p. 789) and the problems solved (e.g. a charged 

disc, or a lens, with axis along the Z-axis) do not violate 

* 
Note Equation (8) is the same as equation (2) using Heins1 
notation instead of Snow's. 



t h i s  condition. Other work which we have found so f a r  [ 9 ,  10, 

11, 121 does no t  seem t o  v i o l a t e  this condition. 

We must caution t h a t  we have no t  a t  th; time of wr i t ing  

of t h i s  repor t  f u l l y  digested t h e  question of whether r e g u l a r i t y  

on t h e  Z-axis i s  absolute ly  c r u c i a l  t o  whether o r  n o t  t h e  

problem of t he  tapered tube i s  amenable t o  a Poisson In t eg ra l  

type analysis .  However, t he  Z-axis i s  outs ide  t he  domain of 

required v a l i d i t y  of so lu t ions  t o  such problems. So the re  is  

no reason t o  expect h a t  t he  Poisson In t eg ra l  w i l l  give t he  

answer. On t h e  o ther  hand, n e i t h e r  can one a s s e r t  a t  this 

po in t  t h a t  it  w i l l  n o t  f i g u r e  i n  a method of solving the  tapered 

tube problem. Indeed, perhaps we need a so lu t ion  v a l i d  outs ide  

the  inner  surface  a s  well  a s  a so lu t ion  va l id  i n s i d e  t h e  outer  

surface  of t he  tapered tube,  so t h a t  t h e i r  region of common 

v a l i d i t y  w i l l  be a s  desired.  

Another method which we f e e l  needs f u r t h e r  exploration 

i s  t h a t  of Snow [I], Chapter IX.  Again, we f e e l  a t  t he  time 

of wr i t ing  of t h i s  r epo r t  t h a t  we have no t  y e t  seen through 

t h e  method well  enough t o  be c e r t a i n  t n a t  it w i l l  appiy i n  

whole o r  i n  p a r t  t o  t h e  tapered tube. The d i f f i c u l t y  a t  t h e  

a x i s  a r i s e s  i n  t ry ing  t o  map the  R-S plane i n t o  t he  wedge- 

region which i s  t h a t  of t he  tapered tube on the  R-Z plane 

without ge t t i ng  i n t o  t he  same type of d i f f i c u l t i e s  with t h e  

mjs: Howeveri f o r  re;lonF; s imi l a r  t o  +.hne s t a t e d  i n  con- 

nection w i t h  t he  Poisson In t eg ra l ,  we f e e l  t h a t  t he  matter  i s  

no t  a t  a l l  s e t t l e d  a t  t h i s  time and t h a t  we should, indeed, 

l i k e  t o  consider it fur ther .  



Nevertheless, in order to seek integral equation solutions 

appropriate to the tapered tube, it would be nice to have an 

integral representation which is tailored to hold in the proper 

region. To this end, we have carried out an investigation 

based on 'the theory of characteristics. It may seem odd to 

do this today, but in nineteenth century work, the relation of 

the wave equation to Laplace's equation through the use of 

complex characteristics was well accepted. We shall present 

these results as soon as we have discussed the work of Niven. 

5. The Work of Niven 

A coordinate system appropriate to the tapered tube was 

treated by Niven [ 4 ] .  Indeed, he defines a coordinate system 
w 

r, 9, $.by 
w 

x = (C + r cos9)cos$ 

y = (C + r cosz)sin$ 

z = r sin 9 

(where the tilda is our notation). 
, 

We find it more convenient to deal with the complement 

of 9. Thus, we shall interchange sin9 and cos9 to write 

x = (C + r sing)cos$ 

y = (C + r sine)sin$ 

z = r cos9 

and, since these differ so trivially from Niven's coordinates, 

we shall call these Niven coordinates also. It is clear then 

that in the Niven coordinates the surfaces of the tapered tube 

with taper angle a are simply 8 = 0  and 9=a. 



The t r a c e  o f  the o u t e r  and inner  surfaces o f  t h e  tapered tube on the  R-Z plane. 
The taper  angle i s  a. The Niven coordinates ( r , ~ )  a r e  shown. 



Niven then presented a form of lap lace,'^ equation i n  

these  coordinates,  namely 

+ r aZv " 7 = 0 .  
+ r C O S ~  a$ 

w 

It i s  c l e a r  t h a t  by making t h e  subs t i t u t i on  8 = n/2 - 8, one 
- 

g e t s  ins tead  

a av av -r (c  + r s i n e )  - + a ( c  + r s i n e )  - 
a r  ar ae ae 

+ 7 = ~ .  aZv 
c + r s i n e  a$ 

Niven then wr i t e s  t h i s  equation i n  terms of f = L n r  f o r  

t he  case  where V i s  independent of $. We s h a l l  w r i t e  ins tead  

t h e  equation i n  t h e  general  case ,  namely 

These Niven coordinates have, i n  f a c t ,  been met before 

i n  this repor t  and indeed and 8 a r e  respec t ive ly  t he  2 and P 
7 of sec t ion  2. In  this sec t ion ,  however, we s h a l l  use  C 

and f o r  o ther  coordinates. 

Niven wr i t e s  Laplace 's  equation f o r  t h e  case where V i s  

independent of gf i n  terms of ( c h a r a c t e r i s t i c )  coordinates 



To him t h i s  i s  j u s t  a  s t e p  i n  a process which i n  f a c t  

does n o t  seem t o  lead us  very far. Indeed t h e  next  s t e p  i s  

t o  pu t  

t + ? = e V  (15a) 

6-,q = t (15b) 

and a r r i v e  a t  

which does indeed admit separat ion of var iab les  solutions.  

However, t h e  simple observation t h a t  

shows t h a t  indeed we a r e  merely back i n  a s l i g h t l y  unfamiliar  

form t o  cy l ind r i ca l  coordinates R and Z and t h a t  t he  separat ion 

of var iab les  w i l l  y i e ld  t h e  f ami l i a r  Bessel functions. 

The r e s t  of Niven's r e s u l t s  a r e  of mathematical i n t e r e s t ,  

bu t  do no t  help  us  with our tapered tube problem. He does 

indeed obtain  some closed form so lu t ions ,  bu t  they do no t  have 

the  proper equipotent ia l  surfaces  appropr ia te  t o  t he  tapered 

tube problem. Indeed, h i s  method is  t o  seek so lu t ions  of t he  

f orm 

where m depends on n i n  some way, and then c lever ly  t o  choose 

some such dependence which allows the  s e r i e s  t o  y i e ld  a solut ion.  



The method is interesting, but it probably lacks the generality 

which we need in order to obtain enough solutions that we can 

handle the tapered tube problem. Indeed, in section 7 below 

we shall present solutions containing types of terms not found 

in (16). 

In closing, we point out that these type of coordinates 

were used by Riemann [7] to solve a problem of an anchor ring. 

Although Riemann's paper is very pretty, again it contains no 

hint how to seek solutions with equipotential surfaces appro- 

priate to the tapered tube. 

6. An Integral Representation of the Solution to Laplace's 
Equation in Niven's Coordinates 

Consider, now, the form of the equation for the potential 

v(~)(R,z) in polar coordinates (R, @ )  as given by equation (2). 

We shall obtain formally an integral representation of the 

solution to this equation in the Niven coordinates (p,e), where 

P R = c + e sine 

z = ef'cose. 

To begin with, let us put 

v(m) = Rmw, 

(where, of course, W will also depend on m, but we find it 

notationally simpler not to write it explicitly). We obtain, 

then for (2) 

Now let us change to coordinates , q ,  where 



(Note that (20a) and (20b) follow from (17) and (13). ) 

We then obtain for (19) 

Now (20)-is in characteristic form, albeit the char- 

acteristics are complex, either in the R, Z coordinates or the 

p, 8 coordinates. It is clear, then, that the characteristics 

are .given by 

p + ie = constant 
and 

. P  - ie = constant. 

Now equation (20) is of the form given in Sommerfeldls 

book [15], section 11, in relation to a hydrodynamic example 

+-^-+^a h.. D i  .-,mc.nn m r r  m s + h r r a  irr.r*l r r s c  c, "-1 I . + <  rrn ,, ,,,,, ,, ,,,,,,,.. ,,,, ,,,,,, ,,.,,,.,, c. ,,,,,,,.. tc the 

adjoint equation 

- -  
a w l  

for each point P ~ ( ~ ~ , B ~ )  such that H = l  at P and 

and 
7 m r l  as - - H = O  

a ?  2(4.+y) 

on the characteristics = const and 5 = const respectively 

which pass through fO, €IO. Riemann solved this problem. The 



so lu t ion  f o r  our case i s  

where 

z = - ( Z  - t0)(-q - To) 

( t  + ? ) ( t o  + 'Zo)' 

F(a ,  $; Y , z )  i s  the  hypergeometric function 

To ob ta in  an i n t e g r a l  form of t h e  so lu t ion  of (20),  then 

we apply t h e  r e l a t i o n  (7)  p. (54) of Sommerfeld [15], which we 

wr i t e  .in t he  form 

where r is  a por t ion  of a curve on which da ta  a r e  given, 

P1 and P2 a r e  t h e  i n t e r sec t ions  of t h e  curve with t h e  respect ive  

c h a r a c t e r i s t i c s  through (po,BO), t h e  i n t eg ra t ion  is  taken t o  be 

along r from P1 t o  P2. (Here we must be care fu l  t h a t  P1 be 

the  po in t  where = y o  i n t e r s e c t s  r and P2 i s  t h e  po in t  

where = to i n t e r s e c t s  r .  ) Also 



a t  
HW. 

We wish now to evaluate the right hand side of (25), 

where we shall take for . r  the curve 8 = 0, which corresponds 

to that surface of the tapered tube which is parallel to the 

axis. We calmlate first for any function u 

Then we obtain from (25) and the relations following it 

where 

Now (26) and (27) give an integral representation of 

the solution. The limits p0 - i e0 and + i e0 are of course Po 
the (complex) values of P at which the characteristics (21a) 
and (21b) through (fo,BO) intersect 8 = 0. 



We have been proceeding formally, but it i s  c lear  tha t  

we must assume analytic boundary data, f o r  otherwise the 

integrand w i l l  be path dependent. 

We sha l l  argue t h a t  the integrand Q ( p , O )  i s  r ea l  f o r  rea l  

values of , Assume t h i s  f o r  the moment. P ,  
If we make the change of variable 

p = p, + i$ 

i n  the int'egrand, we get  f o r  the in tegra l  term 

By putting - $ f o r  $ i n  the first  in tegra l  on the r ight  

hand side,  we get fo r  the integral  term 

which, under our assumptions, becomes 



where t h e  integrand is evaluated a t  ( + i  ,O). This i s  a form P a 
of t he  i n t e g r a l  representa t ion of t h e  solut ion.  

Now l e t  us  look a t  t h e  assumptions on Q. F i r s t  of a l l ,  

i n  order t o  be sure  t h a t  our operations a r e  l eg i t ima te ,  we 

must ass ign ana ly t i c  boundary da t a  on W( ,0 )  and aW/de a t  P 
0 These must be assigned so  t h a t  they a r e  r e a l  when P 
i s  rea l .  Next look a t  H. There i s  no problem of a n a l y t i c i t y  

of H. However, we s h a l l  check t h a t  H i s  r e a l  when e and P are 
r e a l ,  so t h a t  it w i l l  a l s o  follow t h a t  aH/aB w i l l  be r e a l  a t  

r e a l  (p,O). 

We have from (20) and (24) t h a t  

Now the  l as t  equation is  the  product of an expression with 

t h a t  of i ts  complex conjugate and i s  thus  r ea l .  From (23) ,  it 

then follows t h a t  z i s  r e a l  f o r  r e a l  ( p , e ) ,  and hence, from 

(22) and (23) we see t h a t  H i s  r e a l  f o r  r e a l  ( ? , e l .  

This es t ab l i shes ,  a t  l e a s t  formally, t he  i n t e g r a l  repre- 

senta t ion.  

7. Some Polynomial and Ser ies  Solutions 

Although it i s  n o t  poss ible  t o  separate  va r i ab l e s  i n  t h e  

Niven coordinates,  o r  i n  an equivalent  coordinate system, it 

i s  possible  t o  obta in  some exact  so lu t ions  of more gene ra l i t y  

than those  given by Niven. To t h i s  end l e t  u s  s t a r t  with 

equation ( 3 )  f o r  t h e  reduced po ten t i a l  i n  cy l ind r i ca l  



coordinates. We drop the superscript m for notational con- 

venience. We have, then 

2 2 1 2 R V U +  ( 4 - m ) ~ = ~ .  (28) 

We substitute for U the series 

where the index p and the functions fk(Z) are to be determined. 

Substitution of (28) into (29) yields 

Setting the coefficient of f0(z) to zero, we get the 

indicial equation 

I p = =  +m. 

i We choose the larger root p = ~ + r n  of the indicial equation. 
(As with Bessel functions, the smaller root will give nothing 
new. ) We obtain by substitution into (30) 

(2m+2)fl(Z) = O (31) 

Equations (31) and (32) taken together tell us that 

fk(Z) = 0 for odd k 

and that for even k, k = 2j, we have 



This gives us a method of obtaining solutions, since we 

can now pick fo(@) as we wish and make use of the recursion 

relation (32). We shall explore some of the consequences of 

this procedure. 

We see, in particular, from (33) that if we choose fo to 

be a polynomial in Z, then the number of terms in the expansion 

(29) will be finite. The solution will be a square root of R 

times a polynomial in R and Z. We shall investigate the case 

n 
,fo(Z) = Z , n=0,1,2 ,.... (34) 

From these one can, in fact, by addition and multiplication 

by constants, arrive at the results for any choice of a poly- 

nomial for fo. 

Now (34) and (33) tell us that 

for some c to be determined. If we put (35) into (33) we 3 
obtain 

The solution to the recursion relation (36) is 

where j = O,l,. . . ,n/2 if n is even and j = O,l,. . . , (n-1)/2 if 

n is odd. 
/ 



I f  we take  con!m! = 1, we obtain  then a so lu t ion  

where h ( n )  = n/2 if n i s  even and h(n)  = (n-1)/2 i f  n is  odd. 

Equation (38) gives ,  then,  a square r o o t  of R times a 
/ 

polynomial i n  R and 2. Now re turn ing  t o  Niven coordinates,  

we obtain  

m+ 1- 
-113 u = ( c + r  s i n e )  '(r C O S ~ ) ~  h p )  2( ($sece+tane) 23. 

j = O  2 J(n-2j)! j! (n+j ) !  

Since there  a r e  f i n i t e l y  many terms, t he re  i s  no problem 

of convergence. 

Another s e t  of exact  so lu t ions  can be generated by wr i t ing  

f o e )  = 2-n 

where n is  an integer. '  We obta in ,  then,  by the  same process 

According t o  We r a t i o  t e s t ,  t h i s  s e r i e s  w i l l  converge 

R f o r  IZ1 < 1. 

In  the  Niven coordinates,  then we obtain  

u = r-"(c+r s i n e )  w ( % e c e + t a n e ) 2 j  
j = O  2 J j! (j+m)! r 

which converges when 

c + r s e c e <  r c o s e  ( 1 s t  quadrant) 



o r  C 
I- > cose - s i n e  ' 

Now l e t  us  consider a t ape r  angle a < $, so t h a t  we a r e  

concerned w i t h ,  say, 

o < e < a .  

Then case- s i n e  i s  decreasing w i t h  8, s ince  

Thus 

d a 8 ( ~ ~ s B  - s i n e )  = - s ine  - case. 

C < C 
COSB - sine' \ cosa - s ina '  O < e < a .  

Therefore convergence i n  t h e  wedge region w i l l  occur f o r  

C 
> cosa - s ina  

which means t h a t  t h e  so lu t ion  w i l l  be va l id  away from the  

s ingu la s i t y  where t he  ou te r  and inner  surface  of t he  tapered 

tube meet. This i s  the  s o r t  of region t h a t  f i gu re s  i n  a gun 

tube. 

For t he  case of m = O ,  we have a l s o  succeeded i n  f inding 

an addi t iona l  so lu t ion  involving a logarithm and a polynomial. 

We seek so lu t ions  t o  (28) i n  t he  form 

where V s a t i s f i e s  (28) with m =  0. We obtain 



We take f o r  V t he  so lu t ion  (38) which we w r i t e  a s  

where c i s  given by (37). After  some s t ra ightforward manipu- 3 
l a t i o n  we obta in  t h e  recurs ion r e l a t i o n  

We note  t h a t  s i nce  t he re  a r e  only a f i n i t e  number of non-zero 

c and s ince  t he  coe f f i c i en t  of  b .  i n  (40) becomes zero f o r  3' J-1 
j = (n+2)/2 o r j  = (n+l)/2 (depending on whether n i s  even o r  

odd) there  a r e  only a f i n i t e  number of non-zero b .  and so  both 
J 

V and the  summation term i n  (39) become polynomials. 

These solutions. ,  then,  i n  Niven coordinates become 

Some thought must be given t o  t h e  bes t  way t o  assemble 

t he se  so lu t ions  i n  order  t o  s a t i s f y  given boundary conditions. 
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Gesammelte Werke, Chapter XXIV. 

This is of .interest because coordinates appropriate to 

the tapered tube are used. However, the method of solution 

0f.a problem, namely that of an anchor ring, to which the 



paper is devoted, does not in any clear way indicate how to 

attack the tapered tube. 

[8] Weinstein, A. Generalized Axially Symmetric Potential 

Theoryn, Bull. Amer. Math. Soc. 59, pp. 20-38 (1953). - 
Weinstein develops a method of attacking problems by use 

of a generalization of potential theory. This subject merits 

some further study to see if some relation can be found to the 

tapered tube problem. 

In addition we mention some papers of W. D. Collins, who 

uses the method described by Heins. These are of interest for 

the detail which they provide on the method. 

193 Collins, W. D. It On the Solution of Some Axisymmetric 

Boundary Value Problems by Means of Integral Equations 

1,Some Problems for a Spherical CapM , Quart. J. Mech. 

Appl. Math 12, - pp. 232-241 (1959). 
[lo] Collins, W. D. On the Solution of Sose Axisymmetric 

Boundary Value Problems by Means of Integral Equations 
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[ll] Collins, W. D. On the Solution of Some Axisymmetric 

Boundary Value Problems by Means of Integral Equations 

IV, The Electrostatic Potential Due to a Spherical 
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[12] Col l ins ,  W. D. " On t h e  Solution of Some Axisymmetric 

Bounds'* value Problems by Means of In t eg ra l  Equations 

V I I ,  The E l e c t r o s t a t i c  Po t en t i a l  Due t o  a Spherical  

Cap S i tua ted  Ins ide  a Ci rcu la r  Cyl inderw,  Proc. 

Edinburgh Math. Soc. (2)  13, pp. 13-23 (1962). - 
[13] Green and Zerna, " Theoret ica l  E l a s t i c i t y n  , Oxford U. 

Press ,  Oxford (1968). 

[14] Allen, D. N. Relaxation Methodsw,McGraw-Hill, New 

York (1954). 

[15] Sommerfeld, A. ~ a s t i a l  D i f f e r en t i a l  Equations i n  

Physics1, , Academic Press ,  New York (1949). 

9. Conclusion 

The problem of t he  bes t  way t o  proceed t o  obta in  a n a l y t i c a l  

so lu t ions  of t h e  tapered tube problem remains unresolved a t  t he  

moment. We f e e l  that 'some progress' has been made i n  developing 

exact  so lu t ions  i n  t h e  appropr ia te  coordinate system. Perhaps 

a method of assembling these  so lu t ions  t o  f i t  boundary data  

would be f r u i t f u l .  Perhaps a formulation i n  i n t e g r a l  equation 

form, would be t h e  way t o  proceed. Again we f e e l  t h a t  some 

progress has been made by our  i n t e g r a l  representa t ion of 

s ec t i on  6 .  And of course Zakls bas ic  idea  could be developed 

fu r the r .  Indeed, f o r  small t a p e r  angles it could be u se fu l  

n o t  too f a r  from the  i n t e r sec t i on  of t h e  inner  and ou t e r  sur- 

f ace s  a s  it stands. But it would be b e t t e r  t o  t r y  t o  develop 

the  idea  of t he  method f o r  po in t s  f a r  from t h i s  in te r sec t ion .  

we have, indeed, made a s t a b  a t  t he  problem and hope t h a t  our 



contributions will be the first step in the solution. However, 

at this point, we feel that much remains to be done. 
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